STUDY OF THE THERMAL DECOMPOSITION OF MSO_4 (M = Zn(II), Cd(II), Hg(II)) IN A SODIUM NITRATE-POTASSIUM NITRATE MELT

N.B. SINGH and S.P. PANDEY *

Department of Chemistry, University of Gorakhpur, Gorakhpur 273001 (India) (Received 23 July 1984)

ABSTRACT

 MSO_4 (M = Zn²⁺, Cd²⁺, Hg²⁺) dissolves in the molten NaNO₃-KNO₃ eutectic and is decomposed on further heating. The kinetics of decomposition have been studied at different temperatures. The decomposition of CdSO₄ and HgSO₄ in the eutectic melt obey first-order kinetics whereas the decomposition of ZnSO₄ at 420-460°C obeys second-order kinetics. However, at 480°C the decomposition of ZnSO₄ obeys first-order kinetics. The mechanism of decomposition has been given as

 $M^{2+} + SO_4^{2-} + Na^+ + K^+ + 2NO_3^- \rightleftharpoons (Na, K)SO_4 + M^{2+} + 2NO_3^ M^{2+} + NO_3^- \rightarrow MO + NO_2^+$ $NO_3^- + NO_2^+ \rightarrow NO_2 + \frac{1}{2}O_2$

Some of the end products have been analysed by X-ray diffraction.

INTRODUCTION

Molten nitrates and nitrites have recently been used as non-aqueous solvents for studying a number of reactions [1-3]. Recently, Singh and co-workers [4,5] found that metal salts decompose at much lower temperatures in molten nitrate eutectics. This paper describes the decomposition of ZnSO₄, CdSO₄ and HgSO₄ in an NaNO₃-KNO₃ eutectic melt.

EXPERIMENTAL

Materials

NaNO₃, KNO₃, ZnSO₄ \cdot 7H₂O, 3CdSO₄ \cdot 8H₂O, and HgSO₄, all AR (BDH), were used during the reaction. The sodium nitrate-potassium nitrate

^{*} Present address: Chemistry Department, T.D. College, Jaunpur 222001, India.

eutectic was prepared [6] in 45:55% ratio. ZnSO₄ and CdSO₄ were obtained by dehydrating them at 300 and 400°C, respectively.

PROCEDURE

Thermal studies

Thermogravimetric studies of metal sulphates (ZnSO₄, CdSO₄, HgSO₄) in NaNO₃, KNO₃ and NaNO₃/KNO₃ eutectic were carried out with a thermogravimetric analyzer (supplied by P & D Division, Sindri, Dhanbad) in atmospheric air at a heating rate of 4°C min⁻¹. A Corning glass crucible was used during the experiment. DTA studies of metal sulphates in the eutectic melt were carried out with a recording thermal analyzer (Paulik–Paulik– Erdey MOM derivatograph, Hungary) in atmospheric air at a heating rate of 5°C min⁻¹. Kinetics of the thermal decomposition of metal sulphates in the eutectic melt have also been studied using a Corning glass crucible in atmospheric air. The weight losses were noted at different time intervals at constant temperatures. Known weights of the eutectic and metal sulphates were taken during the experiment.

Powder X-ray diffraction studies

The powder X-ray diffraction patterns of the residues left after TG were obtained with an X-ray diffractograph (XRD-5 General Electric, U.S.A.) using $Cu K_{\alpha}$ radiation.

Gravimetric estimations

The reaction products left at the end of TG were washed several times with water to obtain insoluble metal oxides. Zinc, cadmium and mercury were estimated gravimetrically [7] in the oxides.

Qualitative analysis of evolved gases

The evolved gases were tested in the usual way and found to be NO_2 and O_2 .

RESULTS AND DISCUSSION

TG studies (Fig. 1, Table 1) indicate that the metal sulphates decompose at a much lower temperature in nitrate melts than when heated alone. DTA studies (Fig. 2, Table 2) indicate a number of endothermic peaks below

Fig. 1. TG curves.

Fig. 2. DTA curves in the NaNO₃-KNO₃ eutectic of (A) ZnSO₄; (B) CdSO₄, (C) HgSO₄.

 600° C. An endothermic peak at around 120° C is indicative of a phase transformation in KNO₃, whereas an endotherm at around 220° C is due to the melting of the NaNO₃ KNO₃ eutectic. In each curve, there are two closely associated endothermic peaks in the region $400-500^{\circ}$ C (ZnSO₄), $500-600^{\circ}$ C (CdSO₄), $300-400^{\circ}$ C (HgSO₄). These endotherms, when compared with the corresponding TG experiments, show that these peaks appear in the temperature range where decomposition takes place. Since there are two endotherms, it suggests that there are two stages of decomposition, although this is not indicated by TG. It may be inferred that two decomposi-

TABLE 1

Decomposition temperatures

System	Decomp	
	temp. (°C)	
ZnSO ₄	930	
$ZnSO_4 - KNO_3$	420	
$ZnSO_4 - NaNO_3$	400	
$ZnSO_4 - NaNO_3 / KNO_3$ eutectic	420	
CdSO ₄	> 700	
CdSO ₄ -KNO ₃	480	
$CdSO_4 - NaNO_3$	460	
$CdSO_4 - NaNO_3 / KNO_3$ eutectic	460	
HgSO ₄	> 600	
HgSO ₄ KNO ₃	340	
HgSO ₄ -NaNO ₃	320	
HgSO ₄ -NaNO ₃ /KNO ₃ eutectic	320	

TABLE 2

DTA	peak	tempera	tures
-----	------	---------	-------

System	Peak temp. (°C)	Process		
ZnSO ₄ -NaNO ₃ /KNO ₃	120	Phase transformation in KNO ₂		
eutectic	220 400, 480	Melting of eutectic Decomposition of metal sulphate		
CdSO ₄ -NaNO ₃ /KNO ₃	120	Phase transformation in KNO ₃		
eutectic	220 520, 580	Melting of eutectic Decomposition of metal sulphate		
HgSO ₄ -NaNO ₃ /KNO ₃	120	Phase transformation in KNO3		
eutectic	230 300, 380	Melting of eutectic Decomposition of metal sulphate		

206

tion stages are taking place simultaneously, probably with no mass loss in one decomposition, but with a mass loss in the other.

The end products, when examined by powder X-ray diffraction, were

System	$d(\dot{A})$	d (Å)	
-	(rep)	(obs)	
ZnSO ₄ -NaNO/KNO ₃ eutectic			
ZnO	2.48	2.46	
	2.81	2.80	
	2.60	2.60	
$Na_{3}SO_{4}$	4.66	4.60	
_ '	2.64	2.63	
	2.32	2.32	
K₂SO₄	3.00	3.01	
2 -	3.74	3.75	
	4.17	4.10	
$CdSO_4 - NaNO_3 / KNO_3$ eutectic			
CdO	2.71	2.71	
	2.35	2.34	
	1.66	1.66	
Na ₃ SO ₄	2.78	2,78	
2 4	4.66	4.65	
	2.64	2.64	
K ₃ SO,	3.00	3.02	
2 •	3.74	3.75	
	2.08	2.05	
HgSO ₄ -NaNO ₂ /KNO ₂ eutectic			
HgO	2.92	2.94	
C	3.10	3.01	
	1.77	1.76	
Na ₃ SO ₄	2.78	2.75	
2 -	2.64	2.63	
	2.32	2.30	
K,SO₄	2.90	2.90	
4 7	3.74	3.73	
	2 42	2 40	

TABLE 3

X-ray diffraction studies (d values of three lines in order of decreasing intensity are given)

TABLE 4

Gravimetric estimation of metals in different oxides

Metal oxide	% of metal		
	obs.	calc.	
ZnO	80.56	80.33	
CdO	86.20	87.53	
HgO	92.68	92.61	

found to be ZnO, Na_2SO_4 , K_2SO_4 ; CdO, Na_2SO_4 , K_2SO_4 ; and HgO, Na_2SO_4 , K_2SO_4 (Table 3). The presence of oxides was also confirmed by gravimetric estimations (Table 4). The evolved gases were identified as NO_2 and O_2 .

On the basis of the above results, the following stoichiometric reaction may be proposed

 $2MSO_4 + 2NaNO_3 + 2KNO_3 \rightarrow 2MO + Na_2SO_4 + K_2SO_4 + 4NO_2 + O_2$

where M = Zn(II), Cd(II), Hg(II).

The decomposition of $CdSO_4$ and $HgSO_4$ obeys a first-order rate law (Fig. 3) and the rate equation is

$$k_1 = \frac{2.303}{t} \log \frac{a}{a - x}$$

The decomposition of $ZnSO_4$ at 480°C also obeys a first-order rate law (Fig. 4). However, between 420 and 460°C, the decomposition of $ZnSO_4$ obeys a second-order rate law (Fig. 4). The second-order rate equation is

$$k_2 = \frac{1}{t} \frac{x}{a(a-x)}$$

Fig. 3. Test of first-order rate equation for the decomposition of (A) $HgSo_4$, (B) $CdSO_4$ in the NaNO₃-KNO₃ eutectic melt.

where k_1 and k_2 are the reaction rates, *a* is the initial concentration of reactant and *x* is the amount decomposed, i.e., the amount of NO₂ and O₂ liberated at any time *t*. It appears that below 480°C the kinetic feature is different and probably at lower temperatures Zn²⁺ forms some complex intermediates and hence the kinetic feature is changed. The formation of complex intermediates in molten electrolytes is well known. For example, the CdBr⁺ complex ion is formed in a KNO₃-NaNO₃ melt [8].

In the present reaction systems, all the reactants are in the molten state and in the ionic form. The overall reactions between ions can be represented by the following steps

$$M^{2+} + SO_4^{2-} + Na^+ + K^+ + 2NO_3^- \stackrel{1}{\Rightarrow} Na_2SO_4 + K_2SO_4 + M^{2+} + 2NO_3^-$$
$$M^{2+} + NO_3^- \stackrel{11}{\to} MO + NO_2^+$$
$$NO_3^- + NO_2^+ \stackrel{111}{\to} NO_2 + \frac{1}{2}O_2$$

where $M = Zn^{2+}$, Cd^{2+} , Hg^{2+} . Step II can be considered as a Lux-Flood acid-base reaction [9]. The metal cation M^{2+} acts as a Lux-Flood acid and NO_3^- acts as a Lux-Flood base. When the NO_3^- ion comes into contact with the M^{2+} ion in the melt, it is decomposed as

$$M^{2+} + O = N \begin{pmatrix} O^{-} \\ O \end{pmatrix} MO + NO_{2}^{+}$$

However, it is difficult to understand how this decomposition occurs.

Fig. 4. Test of first-order rate equation (A) and second-order rate equation (B) for the decomposition of $ZnSO_4$ in the $NaNO_3-KNO_3$ eutectic melt.

Reaction system	Decomp. temp. (°C)	Wt. of eutec- tic (g)	Wt. of metal sulphate (g)	$\frac{k_1}{(min^{-1})}$	E (kcal mol ⁻¹)
CdSO ₄ -NaNO ₃ /KNO ₃	480	0.2035	0.1100	0.0061	
• 5• 5	500	0.2065	0.1025	0.0213	62
eutectic	520	0.2025	0.1015	0.0480	
	540	0.2045	0.1095	0.1333	
HgSO ₄ - NaNO ₃ / KNO ₃	340	0.2080	0.1095	0.0040	
	360	0.2035	0.1590	0.0120	31
eutectic	380	0.2015	0.1230	0.0250	
	400	0.2000	0.1110	0.0533	
ZnSO ₄ -NaNO ₃ /KNO ₃ eutectic	480	0.2025	0.1060		

TABLE 5

Apparent rate constant and activation energy

TABLE 6

Apparent rate constant and activation energy

Reaction system	Decomp. temp. (°C)	Wt. of eutec- tic (g)	Wt. of ZnSO ₄ (g)	k_2 (min ⁻¹ mol ⁻¹)	$\frac{E}{(\text{kcal})}$
ZnSO ₄ -NaNO ₃ /KNO ₃	420	0.2065	0.1050	155.0	
	44 0	0.1965	0.1010	285.7	52
eutectic	460	0.2020	0.1030	1066.0	

Fig. 5. Arrhenius plot for the $ZnSO_4$ - $NaNO_3/KNO_3$, $CdSO_4$ - $NaNO_3/KNO_3$, $HgSO_4$ - $NaNO_3/KNO_3$ eutectic systems.

It has already been reported that the reaction between NO_3^- is slow and hence is the rate-determining step. The reaction is first order with respect to NO_2^+ or with respect to M^{2+} since both are proportional to each other. The change in NO_3^- ion concentration remains constant since it is part of the solvent and is in excess. Actually, the reactions of $CdSO_4$ and $HgSO_4$ in the nitrate eutectic melt are found to be first order. The reaction of $ZnSO_4$ at 480°C is also found to be first order. However, the reaction of $ZnSO_4$ at 420, 440 and 460°C is found to be second order. In view of the lack of knowledge about the complex ions formed in the $ZnSO_4$ -NaNO₃/KNO₃ system at lower temperatures, it is difficult to give an explanation.

The values of k_1 and k_2 were determined (Tables 5 and 6) at different temperatures for all the three systems and, from an Arrhenius plot (Fig. 5), the activation energies were calculated and are given in Tables 5 and 6. These values show that there is no definite sequence.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. R.P. Rastogi, Head, Chemistry Department, Gorakhpur University for useful discussions. Thanks are also due to the authorities of I.I.T. Kanpur for providing the necessary facilities for X-ray diffraction and DTA studies. One of us (SPP) is thankful to CSIR, New Delhi, for a fellowship.

REFERENCES

- 1 D.H. Kerridge and J.C. Rey, Molten, J. Inorg. Nucl. Chem., 39 (1977) 405.
- 2 D.H. Kerridge and H. Frouzanfar, Thermochim. Acta, 25 (1978) 11.
- 3 D.H. Kerridge and S.A. Tanq, Inorg. Chim. Acta, 4 (1970) 499.
- 4 R.P. Rastogi, N.B. Singh and S.P. Pandey, Indian J. Chem., 21A (1982) 456.
- 5 N.B. Singh and S.P. Pandey, Thermochim. Acta, 67 (1983) 147.
- 6 R.P. Rastogi and K.T. Rama Varma, J. Chem. Soc., (1956) 2097.
- 7 A.I. Vogel, A Textbook of Quantitative Inorganic Chemistry, Longmans, New York, 1961.
- 8 O.M.J. Bockris and A.K.N. Reddi, Modern Electrochemistry, Plenum/Rosetta, 1976, p. 590.
- 9 D.H. Kerridge, Chemistry of Molten Nitrates and Nitrites, International Review of Science, Inorganic Chemistry Science, Vol. 2, Butterworth, University Park Press, 1972.